

Pymox

Pymox is an open source mock object framework for Python.

Basic usage

import mox
import unittest

class PersonTest(mox.MoxTestBase):

 def testUsingMox(self):
 # Create a mock Person
 mock_person = self.mox.CreateMock(Person)

 test_person = ...
 test_primary_key = ...
 unknown_person = ...

 # Expect InsertPerson to be called with test_person; return
 # test_primary_key at that point
 mock_person.InsertPerson(test_person).AndReturn(test_primary_key)

 # Raise an exception when this is called
 mock_person.DeletePerson(unknown_person).AndRaise(UnknownPersonError())

 # Switch from record mode to replay mode
 self.mox.ReplayAll()

 # Run the test
 ret_pk = mock_person.InsertPerson(test_person)
 self.assertEquals(test_primary_key, ret_pk)
 self.assertRaises(UnknownPersonError, mock_person, unknown_person)

Getting started

	Why use Pymox

	Installation

	Tutorial

	Examples

	Reference

Indices and tables

	Index

	Module Index

	Search Page

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_method() (mox.MultipleTimesGroup method)

 	(mox.UnorderedGroup method)

 	add_note() (mox.Error method)

 	(mox.ExpectedMethodCallsError method)

 	(mox.ExpectedMockCreationError method)

 	(mox.PrivateAttributeError method)

 	(mox.UnexpectedMethodCallError method)

 	(mox.UnexpectedMockCreationError method)

 	(mox.UnknownMethodCallError method)

 	addClassCleanup() (mox.MoxTestBase class method)

 	addCleanup() (mox.MoxTestBase method)

 	AddMethod() (mox.MultipleTimesGroup method)

 	(mox.UnorderedGroup method)

 	addTypeEqualityFunc() (mox.MoxTestBase method)

 	And (class in mox)

 	AndRaise() (mox.MockMethod method)

 	AndReturn() (mox.MockMethod method)

 	any_order() (mox.MockMethod method)

 	assertAlmostEqual() (mox.MoxTestBase method)

 	assertCountEqual() (mox.MoxTestBase method)

 	assertDictContainsSubset() (mox.MoxTestBase method)

 	assertEqual() (mox.MoxTestBase method)

 	assertFalse() (mox.MoxTestBase method)

 	assertGreater() (mox.MoxTestBase method)

 	assertGreaterEqual() (mox.MoxTestBase method)

 	
 	assertIn() (mox.MoxTestBase method)

 	assertIs() (mox.MoxTestBase method)

 	assertIsInstance() (mox.MoxTestBase method)

 	assertIsNone() (mox.MoxTestBase method)

 	assertIsNot() (mox.MoxTestBase method)

 	assertIsNotNone() (mox.MoxTestBase method)

 	assertLess() (mox.MoxTestBase method)

 	assertLessEqual() (mox.MoxTestBase method)

 	assertListEqual() (mox.MoxTestBase method)

 	assertLogs() (mox.MoxTestBase method)

 	assertMultiLineEqual() (mox.MoxTestBase method)

 	assertNoLogs() (mox.MoxTestBase method)

 	assertNotAlmostEqual() (mox.MoxTestBase method)

 	assertNotEqual() (mox.MoxTestBase method)

 	assertNotIn() (mox.MoxTestBase method)

 	assertNotIsInstance() (mox.MoxTestBase method)

 	assertNotRegex() (mox.MoxTestBase method)

 	assertRaises() (mox.MoxTestBase method)

 	assertRaisesRegex() (mox.MoxTestBase method)

 	assertRegex() (mox.MoxTestBase method)

 	assertSequenceEqual() (mox.MoxTestBase method)

 	assertSetEqual() (mox.MoxTestBase method)

 	assertTrue() (mox.MoxTestBase method)

 	assertTupleEqual() (mox.MoxTestBase method)

 	assertWarns() (mox.MoxTestBase method)

 	assertWarnsRegex() (mox.MoxTestBase method)

C

 	
 	clean_up_test() (mox.MoxMetaTestBase static method)

 	CleanUpTest() (mox.MoxMetaTestBase static method)

 	Comparator (class in mox)

 	ContainsAttributeValue (class in mox)

 	
 	ContainsKeyValue (class in mox)

 	create_mock() (mox.Mox method)

 	create_mock_anything() (mox.Mox method)

 	CreateMock() (mox.Mox method)

 	CreateMockAnything() (mox.Mox method)

D

 	
 	debug() (mox.MoxTestBase method)

 	
 	doClassCleanups() (mox.MoxTestBase class method)

 	doCleanups() (mox.MoxTestBase method)

E

 	
 	enterClassContext() (mox.MoxTestBase class method)

 	enterContext() (mox.MoxTestBase method)

 	equals() (mox.And method)

 	(mox.Comparator method)

 	(mox.ContainsAttributeValue method)

 	(mox.ContainsKeyValue method)

 	(mox.Func method)

 	(mox.IgnoreArg method)

 	(mox.In method)

 	(mox.IsA method)

 	(mox.IsAlmost method)

 	(mox.Not method)

 	(mox.Or method)

 	(mox.Regex method)

 	(mox.SameElementsAs method)

 	(mox.StrContains method)

 	
 	Error (class in mox)

 	ExpectedMethodCallsError (class in mox)

 	ExpectedMockCreationError (class in mox)

F

 	
 	fail() (mox.MoxTestBase method)

 	
 	failureException (mox.MoxTestBase attribute)

 	Func (class in mox)

G

 	
 	get_possible_group() (mox.MockMethod method)

 	
 	GetPossibleGroup() (mox.MockMethod method)

I

 	
 	IgnoreArg (class in mox)

 	In (class in mox)

 	InAnyOrder() (mox.MockMethod method)

 	is_satisfied() (mox.MultipleTimesGroup method)

 	(mox.UnorderedGroup method)

 	
 	IsA (class in mox)

 	IsAlmost (class in mox)

 	IsSatisfied() (mox.MultipleTimesGroup method)

 	(mox.UnorderedGroup method)

M

 	
 	method_called() (mox.MultipleTimesGroup method)

 	(mox.UnorderedGroup method)

 	MethodCalled() (mox.MultipleTimesGroup method)

 	(mox.UnorderedGroup method)

 	MethodGroup (class in mox)

 	MockAnything (class in mox)

 	MockMethod (class in mox)

 	
 	MockObject (class in mox)

 	Mox (class in mox)

 	MoxMetaTestBase (class in mox)

 	MoxTestBase (class in mox)

 	mro() (mox.MoxMetaTestBase method)

 	multiple_times() (mox.MockMethod method)

 	MultipleTimes() (mox.MockMethod method)

 	MultipleTimesGroup (class in mox)

N

 	
 	next() (mox.MockMethod method)

 	
 	Not (class in mox)

O

 	
 	Or (class in mox)

P

 	
 	PrivateAttributeError (class in mox)

R

 	
 	raises() (mox.MockMethod method)

 	Regex (class in mox)

 	Replay (in module mox)

 	replay_all() (mox.Mox method)

 	
 	ReplayAll() (mox.Mox method)

 	Reset (in module mox)

 	reset_all() (mox.Mox method)

 	ResetAll() (mox.Mox method)

 	returns() (mox.MockMethod method)

S

 	
 	SameElementsAs (class in mox)

 	setUp() (mox.MoxTestBase method)

 	setUpClass() (mox.MoxTestBase class method)

 	shortDescription() (mox.MoxTestBase method)

 	skipTest() (mox.MoxTestBase method)

 	
 	StrContains (class in mox)

 	stubout() (mox.Mox method)

 	stubout_class() (mox.Mox method)

 	StubOutClassWithMocks() (mox.Mox method)

 	StubOutWithMock() (mox.Mox method)

 	subTest() (mox.MoxTestBase method)

T

 	
 	tearDown() (mox.MoxTestBase method)

 	
 	tearDownClass() (mox.MoxTestBase class method)

U

 	
 	UnexpectedMethodCallError (class in mox)

 	UnexpectedMockCreationError (class in mox)

 	UnknownMethodCallError (class in mox)

 	
 	UnorderedGroup (class in mox)

 	unset_stubs() (mox.Mox method)

 	UnsetStubs() (mox.Mox method)

V

 	
 	Verify (in module mox)

 	
 	verify_all() (mox.Mox method)

 	VerifyAll() (mox.Mox method)

W

 	
 	with_side_effects() (mox.MockMethod method)

 	with_traceback() (mox.Error method)

 	(mox.ExpectedMethodCallsError method)

 	(mox.ExpectedMockCreationError method)

 	(mox.PrivateAttributeError method)

 	(mox.UnexpectedMethodCallError method)

 	(mox.UnexpectedMockCreationError method)

 	(mox.UnknownMethodCallError method)

 	
 	WithSideEffects() (mox.MockMethod method)

Examples

Example 1

From project python-keystoneclient, under directory tests, in source file utils.py.

def setUp(self):
 super(TestCase, self).setUp()
 self.mox = mox.Mox()
 self._original_time = time.time
 time.time = lambda: 1234
 httplib2.Http.request = self.mox.CreateMockAnything()
 self.client = client.Client(username=self.TEST_USER,
 token=self.TEST_TOKEN,
 project_id=self.TEST_TENANT,
 auth_url=self.TEST_URL,
 endpoint=self.TEST_URL)

Example 2

From project hyou-master, under directory test, in source file util_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.enumerator = self.mox.CreateMockAnything()
 self.constructor = self.mox.CreateMockAnything()
 self.dict = hyou.util.LazyOrderedDictionary(
 enumerator=self.enumerator, constructor=self.constructor)

Example 3

From project hyou-master, under directory test, in source file spreadsheet_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutClassWithMocks(hyou.client, 'Worksheet')
 self.client = self.mox.CreateMock(
 gdata.spreadsheets.client.SpreadsheetsClient)
 self.drive = self.mox.CreateMockAnything()
 entry = FakeSpreadsheetFeed('Cinamon')
 self.spreadsheet = hyou.client.Spreadsheet(
 None, self.client, self.drive, 'cinamon', entry)

Example 4

From project hyou-master, under directory test, in source file worksheet_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.client = self.mox.CreateMock(
 gdata.spreadsheets.client.SpreadsheetsClient)
 self.worksheet = hyou.client.Worksheet(
 FakeSpreadsheet('cinamon'),
 self.client,
 's1',
 FakeWorksheetFeed('Sheet1', '2', '5'))

Example 5

From project akanda-rug-master, under directory akanda/rug/test/unit/openvswitch, in source file test_ovs_lib.py.

def setUp(self):
 super(OVS_Lib_Test, self).setUp()
 self.BR_NAME = "br-int"
 self.TO = "--timeout=2"

 self.mox = mox.Mox()
 self.root_helper = 'sudo'
 self.br = ovs_lib.OVSBridge(self.BR_NAME, self.root_helper)
 self.mox.StubOutWithMock(utils, "execute")
 self.addCleanup(self.mox.UnsetStubs)

Example 6

From project interstellar-master, under directory gsutil/third_party/gcs-oauth2-boto-plugin/gcs_oauth2_boto_plugin, in source file test_oauth2_client.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutClassWithMocks(httplib2, 'Http')
 self.mock_http = httplib2.Http()

Example 7

From project django-lean, under directory django_lean/experiments/tests, in source file test_tags.py.

def setUp(self):
 self.experiment = Experiment(name="test_experiment")
 self.experiment.save()
 self.experiment.state = Experiment.ENABLED_STATE
 self.experiment.save()

 self.other_experiment = Experiment(name="other_test_experiment")
 self.other_experiment.save()
 self.other_experiment.state = Experiment.ENABLED_STATE
 self.other_experiment.save()
 self.mox = mox.Mox()

Example 8

From project django-lean, under directory django_lean/experiments/tests, in source file test_daily_report.py.

def testZeroParticipantExperiment(self):
 mocker = mox.Mox()
 engagement_calculator = mocker.CreateMockAnything()
 mocker.ReplayAll()

 report_date = date.today()
 EngagementReportGenerator(engagement_score_calculator=engagement_calculator).generate_daily_report_for_experiment(
 self.other_experiment, report_date)

 experiment_report = DailyEngagementReport.objects.get(
 experiment=self.other_experiment, date=report_date)

 mocker.VerifyAll()

 self.assertEquals(None, experiment_report.test_score)
 self.assertEquals(None, experiment_report.control_score)
 self.assertEquals(0, experiment_report.test_group_size)
 self.assertEquals(0, experiment_report.control_group_size)

Example 9

From project django-lean, under directory django_lean/lean_retention/tests, in source file test_reports.py.

def setUp(self):
 self.mox = mox.Mox()
 self.user = User.objects.create_user('user', 'user@example.com', 'user')
 self.activity, _ = DailyActivity.objects.stamp(user=self.user,
 site=get_current_site(),
 medium='Default')
 self.activity.days = 29
 self.activity.save()

Example 10

From project protobuf-objc, under directory python/google/protobuf/internal, in source file decoder_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mock_stream = self.mox.CreateMock(input_stream.InputStream)
 self.mock_message = self.mox.CreateMock(message.Message)

Example 11

From project protobuf-objc, under directory python/google/protobuf/internal, in source file encoder_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.encoder = encoder.Encoder()
 self.mock_stream = self.mox.CreateMock(output_stream.OutputStream)
 self.mock_message = self.mox.CreateMock(message.Message)
 self.encoder._stream = self.mock_stream

Example 12

From project Godel, under directory src/Godel/tests, in source file test_rule_engine.py.

def __init__(self):
 self.tag_stack = []
 self.state_stack = []
 self.stack = []
 self.hypergraph = None
 self.Groundings = {}
 self.Types = {}

 self.mox = mox.Mox()
 self.hypergraph = self.mox.CreateMockAnything()
 self.hypergraph.AnyMethod()

Example 13

From project cc, under directory nova, in source file test.py.

def setUp(self):
 super(TrialTestCase, self).setUp()

 # emulate some of the mox stuff, we can't use the metaclass
 # because it screws with our generators
 self.mox = mox.Mox()
 self.stubs = stubout.StubOutForTesting()
 self.flag_overrides = {}

Example 14

From project imagr-master, under directory Imagr/gmacpyutil, in source file timer_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutWithMock(timer.gmacpyutil, 'SetPlistKey')
 self.mox.StubOutWithMock(timer.gmacpyutil, 'GetPlistKey')

 self.timeplist = '/tmp/blah/myapp.plist'
 self.interval = datetime.timedelta(hours=23)
 self.tf = timer.TimeFile(self.timeplist)

Example 15

From project imagr-master, under directory Imagr/gmacpyutil, in source file ds_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutWithMock(ds.gmacpyutil, 'RunProcess')
 if os.uname()[0] == 'Linux':
 self.InitMockFoundation()
 elif os.uname()[0] == 'Darwin':
 self.StubFoundation()

Example 16

From project google-apputils-master, under directory tests, in source file file_util_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.sample_contents = 'Contents of the file'
 self.file_path = '/path/to/some/file'
 self.fd = 'a file descriptor'

Example 17

From project Android-Development, under directory tools/scripts, in source file divide_and_compress_test.py.

def setUp(self):
 """Prepare the test.

 Construct some mock objects for use with the tests.
 """
 self.my_mox = mox.Mox()
 file1 = BagOfParts()
 file1.filename = 'file1.txt'
 file1.contents = 'This is a test file'
 file2 = BagOfParts()
 file2.filename = 'file2.txt'
 file2.contents = ('akdjfk;djsf;kljdslkfjslkdfjlsfjkdvn;kn;2389rtu4i'
 'tn;ghf8:89H*hp748FJw80fu9WJFpwf39pujens;fihkhjfk'
 'sdjfljkgsc n;iself')
 self.files = {'file1': file1, 'file2': file2}

Example 18

From project nova, under directory nova/tests/xenapi, in source file test_vm_utils.py.

def test_lookup_call(self):
 mock = mox.Mox()
 mock.StubOutWithMock(vm_utils, 'lookup')

 vm_utils.lookup('session', 'somename').AndReturn('ignored')

 mock.ReplayAll()
 vm_utils.vm_ref_or_raise('session', 'somename')
 mock.VerifyAll()

Example 19

From project nova, under directory nova/tests/virt/xenapi/imageupload, in source file test_glance.py.

def setUp(self):
 super(TestGlanceStore, self).setUp()
 self.store = glance.GlanceStore()
 self.mox = mox.Mox()

Example 20

From project nova, under directory nova, in source file test.py.

def setUp(self):
 super(MoxStubout, self).setUp()
 # emulate some of the mox stuff, we can't use the metaclass
 # because it screws with our generators
 self.mox = mox.Mox()
 self.stubs = stubout.StubOutForTesting()
 self.addCleanup(self.mox.UnsetStubs)
 self.addCleanup(self.stubs.UnsetAll)
 self.addCleanup(self.stubs.SmartUnsetAll)
 self.addCleanup(self.mox.VerifyAll)

Example 21

From project nappingcat, under directory tests/gittests, in source file utils.py.

def test_uses_getlogin(self):
 settings = {
 'host':'host-%d' % random.randint(1,100),
 }
 _mox = mox.Mox()
 _mox.StubOutWithMock(os, 'getlogin')
 random_user = 'rand-%d' % random.randint(1,100)
 os.getlogin().AndReturn(random_user)
 _mox.ReplayAll()
 results = utils.get_clone_base_url(settings)
 self.assertEqual('%s@%s' % (random_user, settings['host']), results)
 _mox.UnsetStubs()

Example 22

From project appengine-python3-master, under directory google/appengine/tools/devappserver2/admin, in source file datastore_viewer_test.py.

def setUp(self):
 self.app_id = 'myapp'
 os.environ['APPLICATION_ID'] = self.app_id
 api_server.test_setup_stubs(app_id=self.app_id)

 self.mox = mox.Mox()
 self.mox.StubOutWithMock(admin_request_handler.AdminRequestHandler,
 'render')

Example 23

From project appengine-python3-master, under directory google/appengine/tools/devappserver2/admin, in source file taskqueue_queues_handler_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutWithMock(taskqueue_utils.QueueInfo, 'get')
 self.mox.StubOutWithMock(admin_request_handler.AdminRequestHandler,
 'render')

Example 24

From project habitat, under directory habitat/tests/test_utils, in source file test_startup.py.

def setup(self):
 self.mocker = mox.Mox()
 self.config = copy.deepcopy(_logging_config)

 self.old_handlers = logging.root.handlers
 # nose creates its own handler
 logging.root.handlers = []

 # manual cleanup needed for check_file's tests
 self.temp_dir = None
 self.temp_files = []

Example 25

From project habitat, under directory habitat/tests/test_utils, in source file test_immortal_changes.py.

def setup(self):
 self.m = mox.Mox()

 self.consumer = immortal_changes.Consumer(None,
 backend='habitat.tests.test_utils.'
 'test_immortal_changes.DummyConsumer')
 assert isinstance(self.consumer._consumer, DummyConsumer)
 self.m.StubOutWithMock(self.consumer._consumer, "wait")

 assert immortal_changes.time == time
 immortal_changes.time = DummyTimeModule()
 self.m.StubOutWithMock(immortal_changes.time, "sleep")

 self.m.StubOutWithMock(immortal_changes.logger, "exception")

 # for brevity.
 self.backend = self.consumer._consumer.wait
 self.sleep = immortal_changes.time.sleep
 self.exc = immortal_changes.logger.exception
 self.cb = self.m.CreateMockAnything()

Example 26

From project habitat, under directory habitat/tests, in source file test_parser_daemon.py.

def setup(self):
 self.m = mox.Mox()

 self.config = {
 "couch_uri": "http://localhost:5984", "couch_db": "test"}

 self.m.StubOutWithMock(parser_daemon, 'couchdbkit')
 self.m.StubOutWithMock(parser_daemon, 'immortal_changes')
 self.m.StubOutWithMock(parser_daemon, 'parser')
 self.mock_server = self.m.CreateMock(couchdbkit.Server)
 self.mock_db = self.m.CreateMock(couchdbkit.Database)
 parser_daemon.couchdbkit.Server("http://localhost:5984")\
 .AndReturn(self.mock_server)
 self.mock_server.__getitem__("test").AndReturn(self.mock_db)
 self.mock_db.info().AndReturn({"update_seq": 191238})
 parser_daemon.parser.Parser(self.config)

 self.m.ReplayAll()
 self.daemon = parser_daemon.ParserDaemon(self.config)
 self.m.VerifyAll()
 self.m.ResetAll()

Example 27

From project habitat, under directory habitat/tests/test_parser, in source file test_parser.py.

def setup(self):
 self.m = mox.Mox()
 self.mock_module = self.m.CreateMock(parser.ParserModule)

 class MockModule(parser.ParserModule):
 def __new__(cls, parser):
 return self.mock_module

 base_path = os.path.split(os.path.abspath(__file__))[0]
 cert_path = os.path.join(base_path, 'certs')
 self.parser_config = {"parser": {"modules": [
 {"name": "Mock", "class": MockModule}],
 "certs_dir": cert_path}, "loadables": [],
 "couch_uri": "http://localhost:5984", "couch_db": "test"}

 self.m.StubOutWithMock(parser, 'couchdbkit')
 self.mock_server = self.m.CreateMock(couchdbkit.Server)
 self.mock_db = self.m.CreateMock(couchdbkit.Database)
 parser.couchdbkit.Server("http://localhost:5984")\
 .AndReturn(self.mock_server)
 self.mock_server.__getitem__("test").AndReturn(self.mock_db)

 self.m.ReplayAll()
 self.parser = parser.Parser(self.parser_config)
 self.m.VerifyAll()
 self.m.ResetAll()

Example 28

From project WMCore, under directory test/python/WMCore_t/Alerts_t/ZMQ_t/Sinks_t, in source file EmailSink_t.py.

def setUp(self):
 self.config = ConfigSection("email")
 self.config.fromAddr = "some@local.com"
 self.config.toAddr = ["some1@local.com", "some2@local.com"]
 self.config.smtpServer = "smtp.gov"
 self.config.smtpUser = None
 self.config.smtpPass = None

 # now we want to mock smtp emailing stuff - via pymox - no actual
 # email sending to happen
 self.mox = mox.Mox()
 self.smtpReal = EmailSinkMod.smtplib
 EmailSinkMod.smtplib = self.mox.CreateMock(EmailSinkMod.smtplib)
 self.smtp = self.mox.CreateMockAnything()

Example 29

From project WMCore, under directory test/python/WMCore_t/Storage_t/Plugins_t, in source file SRMV2Impl_t.py.

def setUp(self):
 self.my_mox = mox.Mox()
 self.my_mox.StubOutWithMock(moduleWeAreTesting.os.path, 'getsize')
 self.my_mox.StubOutWithMock(moduleWeAreTesting,'runCommand')
 self.my_mox.StubOutWithMock(moduleWeAreTesting,'tempfile')
 self.popenMocker = self.my_mox.CreateMock(popenMockHelper)
 self.popenBackup = moduleWeAreTesting.Popen

 self.temporaryFiles = []
 self.rules = []

Example 30

From project panfletario, under directory r2/r2/tests/unit, in source file test_link.py.

def test_make_permalink(self):
 m = mox.Mox()
 subreddit = m.CreateMock(self.models.Subreddit)
 #subreddit.name.AndReturn('stuff')
 m.ReplayAll()

 pylons.c.default_sr = True #False
 pylons.c.cname = False
 link = self.models.Link(name = 'Link Name', url = 'self', title = 'A link title', sr_id = 1)
 link._commit()
 permalink = link.make_permalink(subreddit)

 m.VerifyAll()
 assert permalink == '/lw/%s/a_link_title/' % link._id36

 # def test_make_permalink_slow(self):
 #
 #
 # link = self.models.Link(name = 'Link Name', url = 'self', sr_id = 1)
 # m = mox.Mox()
 # mock_subreddit = mox.MockObject(self.models.Subreddit)
 #
 # m.StubOutWithMock(link, 'subreddit_slow', use_mock_anything=True)
 # link.subreddit_slow().AndReturn(mock_subreddit)
 #
 # m.ReplayAll()
 #
 # permalink = link.make_permalink_slow()
 #
 # m.UnsetStubs()
 # m.VerifyAll()

Example 31

From project hyou-master, under directory test, in source file collection_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutClassWithMocks(hyou.client, 'Spreadsheet')
 self.client = self.mox.CreateMock(
 gdata.spreadsheets.client.SpreadsheetsClient)
 self.drive = self.mox.CreateMockAnything()
 self.collection = hyou.client.Collection(self.client, self.drive)

Example 32

From project python-typepad-api, under directory tests, in source file test_tpobject.py.

def test_responseless(self):
 request = {
 'uri': mox.Func(self.saver('uri')),
 'method': 'POST',
 'headers': mox.Func(self.saver('headers')),
 'body': mox.Func(self.saver('body')),
 }
 response = {
 'status': 204, # no content
 }

 http = typepad.TypePadClient()
 typepad.client = http
 http.add_credentials(
 OAuthConsumer('consumertoken', 'consumersecret'),
 OAuthToken('tokentoken', 'tokensecret'),
 domain='api.typepad.com',
)

 mock = mox.Mox()
 mock.StubOutWithMock(http, 'request')
 http.request(**request).AndReturn((httplib2.Response(response), ''))
 mock.ReplayAll()

 class Moose(typepad.TypePadObject):

 class Snert(typepad.TypePadObject):
 volume = typepad.fields.Field()
 snert = typepad.fields.ActionEndpoint(api_name='snert', post_type=Snert)

 moose = Moose()
 moose._location = 'https://api.typepad.com/meese/7.json'

 ret = moose.snert(volume=10)
 self.assert_(ret is None)

 mock.VerifyAll()

 self.assert_(self.uri)
 self.assertEquals(self.uri, 'https://api.typepad.com/meese/7/snert.json')
 self.assert_(self.headers)
 self.assert_(self.body)

 self.assert_(utils.json_equals({
 'volume': 10
 }, self.body))

Example 33

From project horizon, under directory horizon/horizon, in source file test.py.

def setUp(self):
 self.mox = mox.Mox()

 def fake_conn_request(*args, **kwargs):
 raise Exception("An external URI request tried to escape through "
 "an httplib2 client. Args: %s, kwargs: %s"
 % (args, kwargs))
 self._real_conn_request = httplib2.Http._conn_request
 httplib2.Http._conn_request = fake_conn_request

 self._real_horizon_context_processor = context_processors.horizon
 context_processors.horizon = lambda request: self.TEST_CONTEXT

 self._real_get_user_from_request = users.get_user_from_request
 self.setActiveUser(token=self.TEST_TOKEN,
 username=self.TEST_USER,
 tenant_id=self.TEST_TENANT,
 service_catalog=self.TEST_SERVICE_CATALOG)
 self.request = http.HttpRequest()
 middleware.HorizonMiddleware().process_request(self.request)

Example 34

From project nova, under directory nova/tests, in source file test_hypervapi.py.

def __init__(self, test_case_name):
 self._mox = mox.Mox()
 super(HyperVAPITestCase, self).__init__(test_case_name)

Example 35

From project nappingcat, under directory tests/gittests, in source file handlers.py.

def setUp(self):
 self.test_dir = os.path.expanduser('~/.kittygittests')
 self.mox = mox.Mox()

Example 36

From project nappingcat, under directory tests/gittests, in source file operations.py.

def setUp(self):
 self.mox = mox.Mox()
 self.cleanup_dirs = []

Example 37

From project nappingcat, under directory tests, in source file config.py.

def setUp(self):
 self.mox = mox.Mox()
 self.filename = 'tests/.%d.conf' % random.randint(1,100)

Example 38

From project nappingcat, under directory tests, in source file serve.py.

def setUp(self):
 self.mox = mox.Mox()

Example 39

From project appengine-python3-master, under directory google/appengine/tools/devappserver2/admin, in source file taskqueue_utils_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.mox.StubOutWithMock(apiproxy_stub_map, 'MakeSyncCall')

Example 40

From project appengine-python3-master, under directory google/appengine/tools/devappserver2/admin, in source file xmpp_request_handler_test.py.

def setUp(self):
 self.mox = mox.Mox()

Example 41

From project habitat, under directory habitat/tests/test_loadable_manager, in source file test_loadable_manager.py.

def setup(self):
 self.mocker = mox.Mox()
 self.mocker.StubOutWithMock(loadable_manager, "dynamicloader")

Example 42

From project analyzer-master, under directory tests/unit, in source file broken_tick_feeder.py.

def setUp(self):
 self.mock = mox.Mox()

Example 43

From project django-lean, under directory django_lean/lean_analytics, in source file tests.py.

def setUp(self):
 self.mox = mox.Mox()
 self.analytics = KissMetrics()

Example 44

From project cc, under directory vendor/pymox, in source file stubout_test.py.

def setUp(self):
 self.mox = mox.Mox()
 self.sample_function_backup = stubout_testee.SampleFunction

Installing Mox

Download the latest version of Mox. Expand the tarball, and run:

$ python setup.py install

To run Mox’s own tests, run:

$ python mox_test.py

Pymox Reference

Mox

	
class mox.Mox

	Mox: a factory for creating mock objects.

	
CreateMock(class_to_mock, attrs=None)

	Create a new mock object.

	Args:

	# class_to_mock: the class to be mocked
class_to_mock: class
attrs: dict of attribute names to values that will be set on the mock

object. Only public attributes may be set.

	Returns:

	MockObject that can be used as the class_to_mock would be.

	
CreateMockAnything(description=None)

	Create a mock that will accept any method calls.

This does not enforce an interface.

	Args:

	
	description: str. Optionally, a descriptive name for the mock object

	being created, for debugging output purposes.

	
ReplayAll()

	Set all mock objects to replay mode.

	
ResetAll()

	Call reset on all mock objects. This does not unset stubs.

	
StubOutClassWithMocks(obj, attr_name)

	Replace a class with a “mock factory” that will create mock objects.

This is useful if the code-under-test directly instantiates
dependencies. Previously some boilerplate was necessary to
create a mock that would act as a factory. Using
stubout_class, once you’ve stubbed out the class you may
use the stubbed class as you would any other mock created by mox:
during the record phase, new mock instances will be created, and
during replay, the recorded mocks will be returned.

In replay mode

Example using StubOutWithMock (the old, clunky way):

mock1 = mox.CreateMock(my_import.FooClass)
mock2 = mox.CreateMock(my_import.FooClass)
foo_factory = mox.StubOutWithMock(my_import, ‘FooClass’,

use_mock_anything=True)

foo_factory(1, 2).AndReturn(mock1)
foo_factory(9, 10).AndReturn(mock2)
mox.ReplayAll()

my_import.FooClass(1, 2) # Returns mock1 again.
my_import.FooClass(9, 10) # Returns mock2 again.
mox.verify_all()

Example using StubOutClassWithMocks:

mox.StubOutClassWithMocks(my_import, ‘FooClass’)
mock1 = my_import.FooClass(1, 2) # Returns a new mock of FooClass
mock2 = my_import.FooClass(9, 10) # Returns another mock instance
mox.ReplayAll()

my_import.FooClass(1, 2) # Returns mock1 again.
my_import.FooClass(9, 10) # Returns mock2 again.
mox.verify_all()

	
StubOutWithMock(obj, attr_name, use_mock_anything=False)

	Replace a method, attribute, etc. with a Mock.

This will replace a class or module with a MockObject, and everything
else (method, function, etc) with a MockAnything. This can be
overridden to always use a MockAnything by setting use_mock_anything to
True.

	Args:

	obj: A Python object (class, module, instance, callable).
attr_name: str. The name of the attribute to replace with a mock.
use_mock_anything: bool. True if a MockAnything should be used

regardless of the type of attribute.

	
UnsetStubs()

	Restore stubs to their original state.

	
VerifyAll()

	Call verify on all mock objects created.

	
create_mock(class_to_mock, attrs=None)

	Create a new mock object.

	Args:

	# class_to_mock: the class to be mocked
class_to_mock: class
attrs: dict of attribute names to values that will be set on the mock

object. Only public attributes may be set.

	Returns:

	MockObject that can be used as the class_to_mock would be.

	
create_mock_anything(description=None)

	Create a mock that will accept any method calls.

This does not enforce an interface.

	Args:

	
	description: str. Optionally, a descriptive name for the mock object

	being created, for debugging output purposes.

	
replay_all()

	Set all mock objects to replay mode.

	
reset_all()

	Call reset on all mock objects. This does not unset stubs.

	
stubout(obj, attr_name, use_mock_anything=False)

	Replace a method, attribute, etc. with a Mock.

This will replace a class or module with a MockObject, and everything
else (method, function, etc) with a MockAnything. This can be
overridden to always use a MockAnything by setting use_mock_anything to
True.

	Args:

	obj: A Python object (class, module, instance, callable).
attr_name: str. The name of the attribute to replace with a mock.
use_mock_anything: bool. True if a MockAnything should be used

regardless of the type of attribute.

	
stubout_class(obj, attr_name)

	Replace a class with a “mock factory” that will create mock objects.

This is useful if the code-under-test directly instantiates
dependencies. Previously some boilerplate was necessary to
create a mock that would act as a factory. Using
stubout_class, once you’ve stubbed out the class you may
use the stubbed class as you would any other mock created by mox:
during the record phase, new mock instances will be created, and
during replay, the recorded mocks will be returned.

In replay mode

Example using StubOutWithMock (the old, clunky way):

mock1 = mox.CreateMock(my_import.FooClass)
mock2 = mox.CreateMock(my_import.FooClass)
foo_factory = mox.StubOutWithMock(my_import, ‘FooClass’,

use_mock_anything=True)

foo_factory(1, 2).AndReturn(mock1)
foo_factory(9, 10).AndReturn(mock2)
mox.ReplayAll()

my_import.FooClass(1, 2) # Returns mock1 again.
my_import.FooClass(9, 10) # Returns mock2 again.
mox.verify_all()

Example using StubOutClassWithMocks:

mox.StubOutClassWithMocks(my_import, ‘FooClass’)
mock1 = my_import.FooClass(1, 2) # Returns a new mock of FooClass
mock2 = my_import.FooClass(9, 10) # Returns another mock instance
mox.ReplayAll()

my_import.FooClass(1, 2) # Returns mock1 again.
my_import.FooClass(9, 10) # Returns mock2 again.
mox.verify_all()

	
unset_stubs()

	Restore stubs to their original state.

	
verify_all()

	Call verify on all mock objects created.

MockAnything

	
class mox.MockAnything(description=None)

	A mock that can be used to mock anything.

This is helpful for mocking classes that do not provide a public interface.

MockObject

	
class mox.MockObject(class_to_mock, attrs=None)

	A mock object that simulates the public/protected interface of a class.

MethodCallChecker

MockMethod

	
class mox.MockMethod(method_name, call_queue, exception_list, replay_mode, method_to_mock=None, description=None)

	Callable mock method.

A MockMethod should act exactly like the method it mocks, accepting
parameters and returning a value, or throwing an exception (as specified).
When this method is called, it can optionally verify whether the called
method (name and signature) matches the expected method.

	
AndRaise(exception)

	Set the exception to raise when this method is called.

	Args:

	# exception: the exception to raise when this method is called.
exception: Exception

	
AndReturn(return_value)

	Set the value to return when this method is called.

	Args:

	# return_value can be anything.

	
GetPossibleGroup()

	Returns a possible group from the end of the call queue or None if no
other methods are on the stack.

	
InAnyOrder(group_name='default')

	Move this method into a group of unordered calls.

A group of unordered calls must be defined together, and must be
executed in full before the next expected method can be called. There
can be multiple groups that are expected serially, if they are given
different group names. The same group name can be reused if there is a
standard method call, or a group with a different name, spliced between
usages.

	Args:

	group_name: the name of the unordered group.

	Returns:

	self

	
MultipleTimes(group_name='default')

	Move this method into group of calls which may be called multiple
times.

A group of repeating calls must be defined together, and must be
executed in full before the next expected method can be called.

	Args:

	group_name: the name of the unordered group.

	Returns:

	self

	
WithSideEffects(side_effects)

	Set the side effects that are simulated when this method is called.

	Args:

	
	side_effects: A callable which modifies the parameters or other

	relevant state which a given test case depends on.

	Returns:

	Self for chaining with AndReturn and AndRaise.

	
any_order(group_name='default')

	Move this method into a group of unordered calls.

A group of unordered calls must be defined together, and must be
executed in full before the next expected method can be called. There
can be multiple groups that are expected serially, if they are given
different group names. The same group name can be reused if there is a
standard method call, or a group with a different name, spliced between
usages.

	Args:

	group_name: the name of the unordered group.

	Returns:

	self

	
get_possible_group()

	Returns a possible group from the end of the call queue or None if no
other methods are on the stack.

	
multiple_times(group_name='default')

	Move this method into group of calls which may be called multiple
times.

A group of repeating calls must be defined together, and must be
executed in full before the next expected method can be called.

	Args:

	group_name: the name of the unordered group.

	Returns:

	self

	
next()

	Raise a TypeError with a helpful message.

	
raises(exception)

	Set the exception to raise when this method is called.

	Args:

	# exception: the exception to raise when this method is called.
exception: Exception

	
returns(return_value)

	Set the value to return when this method is called.

	Args:

	# return_value can be anything.

	
with_side_effects(side_effects)

	Set the side effects that are simulated when this method is called.

	Args:

	
	side_effects: A callable which modifies the parameters or other

	relevant state which a given test case depends on.

	Returns:

	Self for chaining with AndReturn and AndRaise.

Comparators

	
class mox.Comparator

	Base class for all Mox comparators.

A Comparator can be used as a parameter to a mocked method when the exact
value is not known. For example, the code you are testing might build up a
long SQL string that is passed to your mock DAO. You’re only interested
that the IN clause contains the proper primary keys, so you can set your
mock up as follows:

mock_dao.RunQuery(StrContains(‘IN (1, 2, 4, 5)’)).AndReturn(mock_result)

Now whatever query is passed in must contain the string ‘IN (1, 2, 4, 5)’.

A Comparator may replace one or more parameters, for example:
return at most 10 rows
mock_dao.RunQuery(StrContains(‘SELECT’), 10)

or

Return some non-deterministic number of rows
mock_dao.RunQuery(StrContains(‘SELECT’), IsA(int))

	
equals(rhs)

	Special equals method that all comparators must implement.

	Args:

	rhs: any python object

	
class mox.IsA(class_name)

	This class wraps a basic Python type or class. It is used to verify
that a parameter is of the given type or class.

Example:
mock_dao.Connect(IsA(DbConnectInfo))

	
equals(rhs)

	Check to see if the RHS is an instance of class_name.

	Args:

	# rhs: the right hand side of the test
rhs: object

	Returns:

	bool

	
class mox.IsAlmost(float_value, places=7)

	Comparison class used to check whether a parameter is nearly equal
to a given value. Generally useful for floating point numbers.

Example mock_dao.SetTimeout((IsAlmost(3.9)))

	
equals(rhs)

	Check to see if RHS is almost equal to float_value

	Args:

	rhs: the value to compare to float_value

	Returns:

	bool

	
class mox.StrContains(search_string)

	Comparison class used to check whether a substring exists in a
string parameter. This can be useful in mocking a database with SQL
passed in as a string parameter, for example.

Example:
mock_dao.RunQuery(StrContains(‘IN (1, 2, 4, 5)’)).AndReturn(mock_result)

	
equals(rhs)

	Check to see if the search_string is contained in the rhs string.

	Args:

	# rhs: the right hand side of the test
rhs: object

	Returns:

	bool

	
class mox.Regex(pattern, flags=0)

	Checks if a string matches a regular expression.

This uses a given regular expression to determine equality.

	
equals(rhs)

	Check to see if rhs matches regular expression pattern.

	Returns:

	bool

	
class mox.In(key)

	Checks whether an item (or key) is in a list (or dict) parameter.

Example:
mock_dao.GetUsersInfo(In(‘expectedUserName’)).AndReturn(mock_result)

	
equals(rhs)

	Check to see whether key is in rhs.

	Args:

	rhs: dict

	Returns:

	bool

	
class mox.Not(predicate)

	Checks whether a predicates is False.

	Example:

	mock_dao.UpdateUsers(Not(ContainsKeyValue(‘stevepm’, stevepm_user_info)))

	
equals(rhs)

	Check to see whether the predicate is False.

	Args:

	rhs: A value that will be given in argument of the predicate.

	Returns:

	bool

	
class mox.ContainsKeyValue(key, value)

	Checks whether a key/value pair is in a dict parameter.

Example:
mock_dao.UpdateUsers(ContainsKeyValue(‘stevepm’, stevepm_user_info))

	
equals(rhs)

	Check whether the given key/value pair is in the rhs dict.

	Returns:

	bool

	
class mox.ContainsAttributeValue(key, value)

	Checks whether a passed parameter contains attributes with a given
value.

Example:
mock_dao.UpdateSomething(ContainsAttribute(‘stevepm’, stevepm_user_info))

	
equals(rhs)

	Check whether the given attribute has a matching value in the rhs
object.

	Returns:

	bool

	
class mox.SameElementsAs(expected_seq)

	Checks whether sequences contain the same elements (ignoring order).

Example:
mock_dao.ProcessUsers(SameElementsAs(‘stevepm’, ‘salomaki’))

	
equals(actual_seq)

	Check to see whether actual_seq has same elements as expected_seq.

	Args:

	actual_seq: sequence

	Returns:

	bool

	
class mox.And(*args)

	Evaluates one or more Comparators on RHS and returns an AND of the
results.

	
equals(rhs)

	Checks whether all Comparators are equal to rhs.

	Args:

	# rhs: can be anything

	Returns:

	bool

	
class mox.Or(*args)

	Evaluates one or more Comparators on RHS and returns an OR of the
results.

	
equals(rhs)

	Checks whether any Comparator is equal to rhs.

	Args:

	# rhs: can be anything

	Returns:

	bool

	
class mox.Func(func)

	Call a function that should verify the parameter passed in is correct.

You may need the ability to perform more advanced operations on the
parameter in order to validate it. You can use this to have a callable
validate any parameter. The callable should return either True or False.

Example:

	def myParamValidator(param):

	# Advanced logic here
return True

mock_dao.DoSomething(Func(myParamValidator), true)

	
equals(rhs)

	Test whether rhs passes the function test.

rhs is passed into func.

	Args:

	rhs: any python object

	Returns:

	the result of func(rhs)

	
class mox.IgnoreArg

	Ignore an argument.

This can be used when we don’t care about an argument of a method call.

Example:
Check if CastMagic is called with 3 as first arg and ‘disappear’ as
third. mymock.CastMagic(3, IgnoreArg(), ‘disappear’)

	
equals(unused_rhs)

	Ignores arguments and returns True.

	Args:

	unused_rhs: any python object

	Returns:

	always returns True

Method Groups

	
class mox.MethodGroup(group_name, exception_list)

	Base class containing common behaviour for MethodGroups.

	
class mox.UnorderedGroup(group_name, exception_list)

	UnorderedGroup holds a set of method calls that may occur in any order.

This construct is helpful for non-deterministic events, such as iterating
over the keys of a dict.

	
AddMethod(mock_method)

	Add a method to this group.

	Args:

	mock_method: A mock method to be added to this group.

	
IsSatisfied()

	Return True if there are not any methods in this group.

	
MethodCalled(mock_method)

	Remove a method call from the group.

If the method is not in the set, an UnexpectedMethodCallError will be
raised.

	Args:

	mock_method: a mock method that should be equal to a method in the
group.

	Returns:

	The mock method from the group

	Raises:

	UnexpectedMethodCallError if the mock_method was not in the group.

	
add_method(mock_method)

	Add a method to this group.

	Args:

	mock_method: A mock method to be added to this group.

	
is_satisfied()

	Return True if there are not any methods in this group.

	
method_called(mock_method)

	Remove a method call from the group.

If the method is not in the set, an UnexpectedMethodCallError will be
raised.

	Args:

	mock_method: a mock method that should be equal to a method in the
group.

	Returns:

	The mock method from the group

	Raises:

	UnexpectedMethodCallError if the mock_method was not in the group.

	
class mox.MultipleTimesGroup(group_name, exception_list)

	MultipleTimesGroup holds methods that may be called any number of times.

Note: Each method must be called at least once.

This is helpful, if you don’t know or care how many times a method is
called.

	
AddMethod(mock_method)

	Add a method to this group.

	Args:

	mock_method: A mock method to be added to this group.

	
IsSatisfied()

	Return True if all methods in this group are called at least once.

	
MethodCalled(mock_method)

	Remove a method call from the group.

If the method is not in the set, an UnexpectedMethodCallError will be
raised.

	Args:

	
	mock_method: a mock method that should be equal to a method in the

	group.

	Returns:

	The mock method from the group

	Raises:

	UnexpectedMethodCallError if the mock_method was not in the group.

	
add_method(mock_method)

	Add a method to this group.

	Args:

	mock_method: A mock method to be added to this group.

	
is_satisfied()

	Return True if all methods in this group are called at least once.

	
method_called(mock_method)

	Remove a method call from the group.

If the method is not in the set, an UnexpectedMethodCallError will be
raised.

	Args:

	
	mock_method: a mock method that should be equal to a method in the

	group.

	Returns:

	The mock method from the group

	Raises:

	UnexpectedMethodCallError if the mock_method was not in the group.

Testing

	
class mox.MoxMetaTestBase(name, bases, d)

	Metaclass to add mox cleanup and verification to every test.
As the mox unit testing class is being constructed (MoxTestBase or a
subclass), this metaclass will modify all test functions to call the
CleanUpMox method of the test class after they finish. This means that
unstubbing and verifying will happen for every test with no additional
code, and any failures will result in test failures as opposed to errors.

	
static CleanUpTest(cls, func)

	Adds Mox cleanup code to any MoxTestBase method.
Always unsets stubs after a test. Will verify all mocks for tests that
otherwise pass.
Args:

	cls: MoxTestBase or subclass; the class whose test method we are

	altering.

	func: method; the method of the MoxTestBase test class we wish to

	alter.

	Returns:

	The modified method.

	
static clean_up_test(cls, func)

	Adds Mox cleanup code to any MoxTestBase method.
Always unsets stubs after a test. Will verify all mocks for tests that
otherwise pass.
Args:

	cls: MoxTestBase or subclass; the class whose test method we are

	altering.

	func: method; the method of the MoxTestBase test class we wish to

	alter.

	Returns:

	The modified method.

	
mro()

	Return a type’s method resolution order.

	
class mox.MoxTestBase(methodName='runTest')

	Convenience test class to make stubbing easier.
Sets up a “mox” attribute which is an instance of Mox (any mox tests will
want this), and a “stubs” attribute that is an instance of
StubOutForTesting (needed at times). Also automatically unsets any stubs
and verifies that all mock methods have been called at the end of each
test, eliminating boilerplate code.

	
classmethod addClassCleanup(function, *args, **kwargs)

	Same as addCleanup, except the cleanup items are called even if
setUpClass fails (unlike tearDownClass).

	
addCleanup(function, *args, **kwargs)

	Add a function, with arguments, to be called when the test is
completed. Functions added are called on a LIFO basis and are
called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

	
addTypeEqualityFunc(typeobj, function)

	Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register
their own type equality functions to provide nicer error messages.

	Args:

	
	typeobj: The data type to call this function on when both values

	are of the same type in assertEqual().

	function: The callable taking two arguments and an optional

	msg= argument that raises self.failureException with a
useful error message when the two arguments are not equal.

	
assertAlmostEqual(first, second, places=None, msg=None, delta=None)

	Fail if the two objects are unequal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero, or by comparing that the
difference between the two objects is more than the given
delta.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

If the two objects compare equal then they will automatically
compare almost equal.

	
assertCountEqual(first, second, msg=None)

	Asserts that two iterables have the same elements, the same number of
times, without regard to order.

	self.assertEqual(Counter(list(first)),

	Counter(list(second)))

	Example:

	
	[0, 1, 1] and [1, 0, 1] compare equal.

	[0, 0, 1] and [0, 1] compare unequal.

	
assertDictContainsSubset(subset, dictionary, msg=None)

	Checks whether dictionary is a superset of subset.

	
assertEqual(first, second, msg=None)

	Fail if the two objects are unequal as determined by the ‘==’
operator.

	
assertFalse(expr, msg=None)

	Check that the expression is false.

	
assertGreater(a, b, msg=None)

	Just like self.assertTrue(a > b), but with a nicer default message.

	
assertGreaterEqual(a, b, msg=None)

	Just like self.assertTrue(a >= b), but with a nicer default message.

	
assertIn(member, container, msg=None)

	Just like self.assertTrue(a in b), but with a nicer default message.

	
assertIs(expr1, expr2, msg=None)

	Just like self.assertTrue(a is b), but with a nicer default message.

	
assertIsInstance(obj, cls, msg=None)

	Same as self.assertTrue(isinstance(obj, cls)), with a nicer
default message.

	
assertIsNone(obj, msg=None)

	Same as self.assertTrue(obj is None), with a nicer default message.

	
assertIsNot(expr1, expr2, msg=None)

	Just like self.assertTrue(a is not b), but with a nicer default message.

	
assertIsNotNone(obj, msg=None)

	Included for symmetry with assertIsNone.

	
assertLess(a, b, msg=None)

	Just like self.assertTrue(a < b), but with a nicer default message.

	
assertLessEqual(a, b, msg=None)

	Just like self.assertTrue(a <= b), but with a nicer default message.

	
assertListEqual(list1, list2, msg=None)

	A list-specific equality assertion.

	Args:

	list1: The first list to compare.
list2: The second list to compare.
msg: Optional message to use on failure instead of a list of

differences.

	
assertLogs(logger=None, level=None)

	Fail unless a log message of level level or higher is emitted
on logger_name or its children. If omitted, level defaults to
INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield
a recording object with two attributes: output and records.
At the end of the context manager, the output attribute will
be a list of the matching formatted log messages and the
records attribute will be a list of the corresponding LogRecord
objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
 logging.getLogger('foo').info('first message')
 logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message',
 'ERROR:foo.bar:second message'])

	
assertMultiLineEqual(first, second, msg=None)

	Assert that two multi-line strings are equal.

	
assertNoLogs(logger=None, level=None)

	Fail unless no log messages of level level or higher are emitted
on logger_name or its children.

This method must be used as a context manager.

	
assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)

	Fail if the two objects are equal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero, or by comparing that the
difference between the two objects is less than the given delta.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

Objects that are equal automatically fail.

	
assertNotEqual(first, second, msg=None)

	Fail if the two objects are equal as determined by the ‘!=’
operator.

	
assertNotIn(member, container, msg=None)

	Just like self.assertTrue(a not in b), but with a nicer default message.

	
assertNotIsInstance(obj, cls, msg=None)

	Included for symmetry with assertIsInstance.

	
assertNotRegex(text, unexpected_regex, msg=None)

	Fail the test if the text matches the regular expression.

	
assertRaises(expected_exception, *args, **kwargs)

	Fail unless an exception of class expected_exception is raised
by the callable when invoked with specified positional and
keyword arguments. If a different type of exception is
raised, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.

If called with the callable and arguments omitted, will return a
context object used like this:

with self.assertRaises(SomeException):
 do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises
is used as a context object.

The context manager keeps a reference to the exception as
the ‘exception’ attribute. This allows you to inspect the
exception after the assertion:

with self.assertRaises(SomeException) as cm:
 do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

	
assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)

	Asserts that the message in a raised exception matches a regex.

	Args:

	expected_exception: Exception class expected to be raised.
expected_regex: Regex (re.Pattern object or string) expected

to be found in error message.

args: Function to be called and extra positional args.
kwargs: Extra kwargs.
msg: Optional message used in case of failure. Can only be used

when assertRaisesRegex is used as a context manager.

	
assertRegex(text, expected_regex, msg=None)

	Fail the test unless the text matches the regular expression.

	
assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)

	An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one
which can be indexed, has a length, and has an equality operator.

	Args:

	seq1: The first sequence to compare.
seq2: The second sequence to compare.
seq_type: The expected datatype of the sequences, or None if no

datatype should be enforced.

	msg: Optional message to use on failure instead of a list of

	differences.

	
assertSetEqual(set1, set2, msg=None)

	A set-specific equality assertion.

	Args:

	set1: The first set to compare.
set2: The second set to compare.
msg: Optional message to use on failure instead of a list of

differences.

assertSetEqual uses ducktyping to support different types of sets, and
is optimized for sets specifically (parameters must support a
difference method).

	
assertTrue(expr, msg=None)

	Check that the expression is true.

	
assertTupleEqual(tuple1, tuple2, msg=None)

	A tuple-specific equality assertion.

	Args:

	tuple1: The first tuple to compare.
tuple2: The second tuple to compare.
msg: Optional message to use on failure instead of a list of

differences.

	
assertWarns(expected_warning, *args, **kwargs)

	Fail unless a warning of class warnClass is triggered
by the callable when invoked with specified positional and
keyword arguments. If a different type of warning is
triggered, it will not be handled: depending on the other
warning filtering rules in effect, it might be silenced, printed
out, or raised as an exception.

If called with the callable and arguments omitted, will return a
context object used like this:

with self.assertWarns(SomeWarning):
 do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns
is used as a context object.

The context manager keeps a reference to the first matching
warning as the ‘warning’ attribute; similarly, the ‘filename’
and ‘lineno’ attributes give you information about the line
of Python code from which the warning was triggered.
This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
 do_something()
the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

	
assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)

	Asserts that the message in a triggered warning matches a regexp.
Basic functioning is similar to assertWarns() with the addition
that only warnings whose messages also match the regular expression
are considered successful matches.

	Args:

	expected_warning: Warning class expected to be triggered.
expected_regex: Regex (re.Pattern object or string) expected

to be found in error message.

args: Function to be called and extra positional args.
kwargs: Extra kwargs.
msg: Optional message used in case of failure. Can only be used

when assertWarnsRegex is used as a context manager.

	
debug()

	Run the test without collecting errors in a TestResult

	
classmethod doClassCleanups()

	Execute all class cleanup functions. Normally called for you after
tearDownClass.

	
doCleanups()

	Execute all cleanup functions. Normally called for you after
tearDown.

	
classmethod enterClassContext(cm)

	Same as enterContext, but class-wide.

	
enterContext(cm)

	Enters the supplied context manager.

If successful, also adds its __exit__ method as a cleanup
function and returns the result of the __enter__ method.

	
fail(msg=None)

	Fail immediately, with the given message.

	
failureException

	alias of builtins.AssertionError

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
shortDescription()

	Returns a one-line description of the test, or None if no
description has been provided.

The default implementation of this method returns the first line of
the specified test method’s docstring.

	
skipTest(reason)

	Skip this test.

	
subTest(msg=<object object>, **params)

	Return a context manager that will return the enclosed block
of code in a subtest identified by the optional message and
keyword parameters. A failure in the subtest marks the test
case as failed but resumes execution at the end of the enclosed
block, allowing further test code to be executed.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
classmethod tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

Functions

	
mox.Replay

	alias of mox.mox.replay

	
mox.Verify

	alias of mox.mox.verify

	
mox.Reset

	alias of mox.mox.reset

Exceptions

	
class mox.Error

	Base exception for this module.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class mox.ExpectedMethodCallsError(expected_methods)

	Raised when Verify() is called before all expected methods have been
called

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class mox.UnexpectedMethodCallError(unexpected_method, expected)

	Raised when an unexpected method is called.

This can occur if a method is called with incorrect parameters, or out of
the specified order.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class mox.UnknownMethodCallError(unknown_method_name)

	Raised if an unknown method is requested of the mock object.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class mox.PrivateAttributeError(attr)

	Raised if a MockObject is passed a private additional attribute name.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class mox.ExpectedMockCreationError(expected_mocks)

	Raised if mocks should have been created by StubOutClassWithMocks.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class mox.UnexpectedMockCreationError(instance, *params, **named_params)

	Raised if too many mocks were created by StubOutClassWithMocks.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Tutorial

Introduction

Mox is a mock object framework for Python.

Mox is based on EasyMock, a Java mock object framework.

Mox will make mock objects for you, so you don’t have to create your own! It mocks the public/protected interfaces of Python objects. You set up your mock object’s expected behavior using a domain-specific language (DSL), which makes your tests easy to understand and refactor!

Core concepts

When you create a mock object, it is in record mode. You record the behavior you expect by calling the expected methods on the mock object. Once you have recorded the expected behavior, you switch the mock into replay mode. Then you start your actual test code. After your testing is done (usually along with other assertions) you verify that all recorded (expected) interactions occurred.

Mox is strict. That means that it expects the methods to be called in the order they are recorded, on a per-mock level. This is helpful to ensure that a database connection is not closed before it is used, etc.

Workflow overview

Create mock (in record mode)
Set up expectations
Put mock into replay mode
Run test
Verify expected interactions with the mock occurred

Basic Usage

import unittest import mox

class DaoUnitTest(unittest.TestCase):

 def setUp(self):
 # Create an instance of Mox
 self.person_mocker = mox.Mox()

 def testUsingMox(self):
 # Create a mock PersonDao
 dao = self.person_mocker.CreateMock(PersonDao)

 # Return a value when this method is called
 dao.InsertPerson(test_person).AndReturn(test_primary_key)

 # Void method
 dao.UpdatePerson(test_person)

 # Raise an exception when this is called
 dao.DeletePerson(unknown_person).AndRaise(UnknownPersonError('id not found'))

 # Put all mocks created by mox into replay mode
 self.person_mocker.ReplayAll()

 # Run the test
 ret_pk = dao.InsertPerson(test_person)
 dao.UpdatePerson(test_person)
 self.assertRaises(UnknownPersonError, dao, unknown_person)

 # Verify all mocks were used as expected, and tests ran properly
 self.person_mocker.VerifyAll()
 self.assertEquals(test_primary_key, ret_pk)

Or to create a single mock object directly without the Mox() factory:

dao = mox.MockObject(PersonDao)
dao.InsertPerson(test_person).AndReturn(test_primary_key)
dao.UpdatePerson(test_person)
dao.DeletePerson(unknown_person).AndRaise(UnknownPersonError('id not found'))
mox.Replay(dao)
...
mox.Verify(dao)

Optionally, you can make your test case be a subclass of mox.MoxTestBase; this will automatically create a mock object factory in self.mox, and will automatically verify all mock objects and unset stubs at the end of each test.

Unexpected Behavior

Occasionally, snakes on a plane happen: some code uses your mock object in a way you weren’t expecting it to. Fortunately for everyone involved, Mox will let you know exactly what unexpected event happened.

Unexpected method call

dao = self.person_mocker.CreateMock(PersonDao)
dao.InsertPerson(test_person).AndReturn(test_primary_key)
self.person_mocker.ReplayAll()
ret_pk = dao.InsertPerson(other_person)
self.person_mocker.VerifyAll()
raises Unexpected method call: InsertPerson(other_person) -> None.
Expecting: InsertPerson(test_person) -> test_primary_key

Unknown method call

dao = self.person_mocker.CreateMock(PersonDao)
dao.InsertPersonZ(test_person).AndReturn(test_primary_key)
self.person_mocker.ReplayAll()
raises Method called is not a member of the object: dao.InsertPersonZ(test_person)

Expected method call (but it didn’t happen)

dao = self.person_mocker.CreateMock(PersonDao)
dao.InsertPerson(test_person).AndReturn(test_primary_key)
self.person_mocker.ReplayAll()
self.person_mocker.VerifyAll()
raises Verify: Expected methods never called: 0. InsertPerson(test_person) -> test_primary_key

Threading issues

Mock objects created by Mox are not thread-safe. If you are replaying mocks in a multi-threaded environment, please guard the mocks via mutex.

Specifically, the code to validate that the current call matches the recorded call can result in a race condition.

Hopefully soon there will be an option to make the mocks thread safe!

Advanced Usage

Believe it or not, there are other features as well!

In Any Order

Unfortunately, there are some things that are non-deterministic, such as iterating over the keys of a dictionary. For these cases, you’ll want to group your un-ordered method calls together. This creates a group of method calls that are unordered with respect to each other, but ordered with respect to other expectations. For example:

dao.OpenConnection()
dao.Call(1).InAnyOrder().AndReturn('one')
dao.Call(2).InAnyOrder().AndReturn('two')
dao.Call(3).InAnyOrder().AndReturn('three')
dao.CloseConnection()
mox.Replay(mock)

The Call methods can occur in any order, but they must all occur after OpenConnection and before CloseConnection.

It is also possible to have two consecutive groups of InAnyOrder. In order to differentiate between the two groups, you would give names to one or both of the groups.

dao.OpenConnection()
dao.Foo(1).InAnyOrder('foo').AndReturn('one')
dao.Foo(2).InAnyOrder('foo').AndReturn('two')
dao.Foo(3).InAnyOrder('foo').AndReturn('three')
dao.Bar('one').InAnyOrder('foo').AndReturn(1)
dao.Bar('two').InAnyOrder('bar').AndReturn(2)
dao.Bar('three').InAnyOrder('baz').AndReturn(3)
dao.CloseConnection()
mox.Replay(mock)

The Foo calls can still occur in any order, but they must all occur before the unordered Bar calls occur.

Stub Out

Often, the class you’re testing has one method that delegates to a lot of other complex methods. The delegation logic can be complicated, so you only want to test that, without having to record expectations for all of the work done by the submethods. For example:

class MyRequestHandler(object):

 def HandleRequest(self, request):
 if request.IsExternal():
 self.Authenticate(request)
 self.Authorize(request)
 self.Process(request)
 else:
 self.ProcessInternal(request)

Here, Authenticate, Authorize and Process are all expensive, and have tons of logic in them. You don’t really want or need to test what they do; you just need to test that they’re called. But the MyRequestHandler isn’t a mock object here: it’s the actual object you’re testing. So what do you do…?! Use StubOutWithMock!

handler = MyRequestHandler()
m = mox.Mox()
m.StubOutWithMock(handler, "Authenticate")
m.StubOutWithMock(handler, "Authorize")
m.StubOutWithMock(handler, "Process")
handler.Authenticate(IsA(Request))
handler.Authorize(IsA(Request))
handler.Process(IsA(Request))
m.ReplayAll()

handler.HandleRequest(request)

m.UnsetStubs()
m.VerifyAll()

Note: If UnsetStubs() was called after Verify() and Verify() raises an exception because it fails then the rest of your tests may end up in a strange state. You should either call it before Verify() or – even better – call it in tearDown() which gets executed regardless of whether Verify() fails or succeeds. (If you use mox.MoxTestBase, this is taken care of for you.)

Comparators

If you aren’t able to pass a argument which is equal (according to __eq__) to the expected argument when you’re recording mock behavior, you probably want to use a Comparator.

	IsA(class) – Check if the parameter is an instance of the given class dao.InsertUser(IsA(Person))

	StrContains(string) - Check if the parameter contains the given substring dao.RunSql(StrContains(‘WHERE id=%d’ % expected_id))

	Regex(pattern [, flags]) - Check if the parameter matches the given regular expression dao.RunSql(Regex(r’WHERE.*s+id=%d’ % expected_id, flags=re.IGNORECASE))

	In(value) - Check if the parameter (list, tuple, or dict) contains the given value dao.BulkInsert(In(test_person))

	ContainsKeyValue(key, value) - Check if the parameter contains the given key/value pair dao.BulkInsert(ContainsKeyValue(test_id, test_person))

	Func(callable) - Validate the parameter with the given callable. This can be used for more complex checking. The callable must take 1 argument and return a bool. dao.InsertAuditRecord(Func(IsValidAudit))

	IsAlmost(value [, places]) - Check if the parameter is equal to a given value up to a certain number of decimal places. Useful for floating point numbers. dao.AddInterestToAccount(IsAlmost(0.05))

	SameElementsAs(sequence) - Check if the sequence returned has the same elements as the given sequence. Useful for lists that may be generated with non-deterministic order. dao.ProcessUsers(SameElementsAs([person1, person2]))

	IgnoreArg() - Ignore an argument. Check first and third arguments; but ignore 2nd argument. dao.UpdateUser(3, IgnoreArg(), ‘admin’)

	And() and Or(): combine comparators. These both take a variable number of comparators. dao.BulkInsert(And(In(test_person), IsA(list)))

You can write your own comparators. It’s easy!

MockAnything

Some classes do not provide public interfaces; for example, they might use __getattribute__ to dynamically create their interface. For these classes, you can use a MockAnything. It does not enforce any interface, so any call your heart desires is valid. It works in the same record-replay-verify paradigm. Don’t use this unless you absolutely have to! You can create a MockAnything with the CreateMockAnything method of your Mox instance like so: m = mox.Mox() mock = m.CreateMockAnything() mock.AnyMethod()

You may also create a MockAnything instance directly, but then you must call mox.Replay() and mox.Verify() on it, instead of using the Mox factory methods.

mock = mox.MockAnything() mock.AnyMethod() mox.Replay(mock)

mock.AnyMethod()

mox.Verify(mock)

Attributes

Some classes automatically create attributes on creation. If you stub out a class, then these attributes will not be created. You have to define these attributes in your MockObject on your mock setup.

m = mox.Mox()

fake_axis = m.CreateMock(MyAxis)

fake_chart = m.CreateMock(MyChart) fake_chart.axis = fake_axis

Mock a class

You may have code that doesn’t use dependency injection, and just creates objects directly. You may also want to mock those objects. Thankfully this is possible with Mox.

For example, to stub out the foo.bar module which contains the Baz class that your code creates directly:

Mock out the class using Mox. self.mox.StubOutClassWithMocks(foo.bar.Baz) # Record that the creation of Baz should return a mock baz. mock_baz = foo.bar.Baz()

Side Effects

Sometimes the behavior of the code you are testing is dependent on some side effect of the object you are mocking. Some examples of when this is the case are when real object might treat some object as an “out” or “in/out” parameter or the real object is meant to change some shared resource that modifies the behavior of your testing unit. It is possible to simulate these side effects by using WithSideEffects.

This function will be passed to WithSideEffects; when
GetWaitingMessages is called on the mock, this function will be
called with the same arguments as GetWaitingMessages.

def add_messages(message_list):
 message_list += ['message 1', 'message 2']
 message_appender = mox.MockObject(PendingMessages)
 message_appender.GetWaitingMessages(
 ['message 0']).WithSideEffects(add_messages).AndReturn(2)

 mox.Replay(message_appender)
 messages = ['message 0']
 new_messages = message_appender.GetWaitingMessages(messages)
 mox.Verify(message_appender)

 assertEquals(['message 0', 'message 1', 'message 2'], messages)

Callbacks

Mocking a callback should be pretty straight forward.

m = mox.Mox()
mock_callback = m.CreateMockAnything() # MockAnything is callable
test_object.SetCallback(mock_callback)
mock_callback(42) # Expect this to be called.
m.ReplayAll()
test_object.DoStuff() # Which in turn calls mock_callback... m.VerifyAll()

Misc

I’ve seen code that likes to access class variables through instances, so I’ve added support for this.

print 'this is silly, but it happens:', mock_obj.MY_CLASS_VARIABLE

There is support for comparing mock objects. This could be helpful for testing that your mock got injected into the proper places:

dao.set_db(mock_db)
self.assertEquals(mock_db, dao._MyDAO__db)

I’ve also seen code that likes to verify if an object is false, for example:

def myMethod(self, foo, bar=None):
 if not bar:
 # use internal default

To deal with this, you can make your mock expect __nonzero__, so you can safely inject your mock into this object. Hurray!

Examples

Basic Example

Let’s say you have this class, and you’d like to test it:

class PersonManager(object):

 def init(self, person_dao): self._dao = person_dao

 def CreatePerson(self, person, user): """Create a Person"""

 if user != 'stevepm':
 raise Exception('no way, jose')

 try:
 self._dao.InsertPerson(person)
 except PersistenceException, e:
 raise BusinessException('error talking to db', e)

And you have the class PersonManager depends on:

class PersonDao(object):

 def init(self, db): self._db = db

 def InsertPerson(self, person):
 self._db.Execute('INSERT INTO Person(name) VALUES ("%s")' % person)

So now you can write the test:

class PersonManagerTest(unittest.TestCase):

 def setUp(self):
 self.mox = mox.Mox()
 self.dao = self.mox.CreateMock(PersonDao)
 self.manager = PersonManager(self.dao)

 def testCreatePersonWithAccess(self):
 self.dao.InsertPerson(test_person)
 self.mox.ReplayAll()
 self.manager.CreatePerson(test_person, 'stevepm')
 self.mox.VerifyAll()

 def testCreatePersonWithDbException(self):
 self.dao.InsertPerson(test_person).AndRaise(
 PersistenceException('Snakes!'))
 self.mox.ReplayAll()
 self.assertRaises(
 BusinessException, self.manager.CreatePerson, test_person, 'stevepm')
 self.mox.VerifyAll()

Pretty cool, huh?

Extending The Basic Example

Now let’s say you want to have your DAO return the new primary key for the person, and your manager class would like to verify that the primary key is greater than some number. Who knows, it’s a toy example! :) You would change your code as follows:

def CreatePerson(self, person, user):
 """Creates a Person."""
 if user != 'stevepm':
 raise Exception('no way, jose')

 try:
 primary_key = self._dao.InsertPerson(person)
 except PersistenceException e:
 raise BusinessException('error talking to db', e)

 if primary_key < MIN_PRIMARY_KEY_VALUE:
 self._dao.DeletePerson(primary_key)
 raise BusinessException('primary key too small')

def InsertPerson(self, person):
 return db.Execute('INSERT INTO Person(name) VALUES ("%s")' % person)

def DeletePerson(self, person_id):
 db.Execute('DELETE FROM Person WHERE ...' % person_id)

Now you can modify your test:

def testCreatePersonWithAccess(self):
 self.dao.InsertPerson(test_person).AndReturn(HUGE_PRIMARY_KEY)
 self.mox.ReplayAll()
 self.manager.CreatePerson(test_person, 'stevepm')
 self.mox.VerifyAll()

And add the new test:

def testCreatePersonWithSmallPrimaryKey(self):
self.dao.InsertPerson(test_person).AndReturn(TINY_PRIMARY_KEY)
self.dao.DeletePerson(TINY_PRIMARY_KEY)
self.mox.ReplayAll()
self.assertRaises(
 BuisnessException, self.manager.CreatePerson, test_person, 'stevepm')
self.mox.VerifyAll()

Complicating Things Even More…

Ugh, now let’s say it is up to your manager to pass some audit trail object to the DAO, which the DAO handles appropriately. Let’s not worry about the impl, since we’re really just dealing with public interfaces. The new DAO interface is:

def InsertPerson(self, person, audit_trail_obj):

And the manager now looks like this:

def CreatePerson(self, person, user):
 """Create a Person"""

if user != 'stevepm':
 raise Exception('no way, jose')

 audit_record = AuditRecord(user)

 try:
 primary_key = self._dao.InsertPerson(person, audit_record)
 except PersistenceException e:
 raise BusinessException('error talking to db', e)

 if primary_key < MIN_PRIMARY_KEY_VALUE:
 self._dao.DeletePerson(primary_key)
 raise BusinessException('primary key too small')

Oh now, how do we setup our expected call to dao.InsertPerson now that a parameter is out of our control?! Have no fear, Mox is here! There are Comparators that can be used to check the equivalency of method parameters. You can even mix and match then with real parameters, as you’ll see below.

def testCreatePersonWithAccess(self): self.dao.InsertPerson(test_person, IsA(AuditRecord)).AndReturn(HUGE_PRIMARY_KEY) self.mox.ReplayAll() self.manager.CreatePerson(test_person, ‘stevepm’) self.mox.VerifyAll()

There are all kinds of other comparators for simple parameter checking. If you have complex logic to check the value, you can even use a callable to verify it.

def testCreatePersonWithAccess(self):
 self.dao.InsertPerson(
 test_person, Func(ValidAuditRecord)).AndReturn(HUGE_PRIMARY_KEY)
 self.mox.ReplayAll()
 self.manager.CreatePerson(test_person, 'stevepm')
 self.mox.VerifyAll()

def ValidAuditRecord(audit_record):
 return (audit_record.user() == 'stevepm' and audit_record.type() == 'insert')

Introduction

Here we provide some common Mox recipes that people have found useful. This section’s constantly under development; if you find a better way of implementing a recipe below, please let us know in the comments.

Set up your Mox test classes in a sane way

Note: many other recipes assume you’ve done this.

def setUp(self):
 self.mox = mox.Mox()

def tearDown(self):
 self.mox.UnsetStubs()

Stub out a method called from a constructor in the same class

TODO: Write a public example here.

Stub out a static method in the class under test

def testFoo(self):

 orig_method = module.class.StaticMethod

 static_stub = staticmethod(lambda *args, **kwargs: None)
 module.class.StaticMethod = static_stub

 self.mox.ReplayAll()

 ...

 self.mox.VerifyAll()

 module.class.StaticMethod = orig_method

Mock a module-level function in a different module

def testFoo(self):

self.mox.StubOutWithMock(module_to_mock, 'FunctionToMock')
module_to_mock.FunctionToMock().AndReturn(foo)

self.mox.ReplayAll()
...
self.mox.VerifyAll()

Stub out a class in a different module

TODO: Write a public example here.

Mock a method in the class under test.

TODO: Investigate this further. Maybe stubbing out call would help?

def testFoo(self):

 # Note the difference: we instantiate the class *before* Replaying.
 foo_instance = module_under_test.ClassUnderTest()
 self.mox.StubOutWithMock(foo_instance, 'MethodToStub')
 foo_instance.MethodToStub().AndReturn('foo')

 ...

 self.mox.ReplayAll()
 ...
 self.mox.VerifyAll()

Mock a generator in the class under test

def testFoo(self):

 ...

 foo_instance = module_under_test.ClassUnderTest()
 self.mox.StubOutWithMock(foo_instance, 'GeneratorToStub')

 mygen = (x for x in [1, 2, 3])
 foo_instance.MethodToStub(mox.IsA(object)).AndReturn(mygen)

 ...

 self.mox.ReplayAll()

 ...

 self.mox.VerifyAll()
    ```





Mocking datetime.datetime.now

import datetime import mox

m = mox.Mox()

Stub out the datatime.datetime class.

m.StubOutWithMock(datetime, 'datetime')

Record a call to 'now', and have it return the value '1234'

datetime.datetime.now().AndReturn(1234)

Set the mocks to replay mode

m.ReplayAll()

This will return '1234'

datetime.datetime.now()

Verify the time was actually checked.

m.VerifyAll()





Return datetime.datetime to its default (non-mock) state.

m.UnsetStubs()





Alternatively, rewrite your code so that you can mock out datetime.now without Mox:

def FunctionBeingTested(now=datetime.datetime.now): DoSomethingWith(now())





in test code

def MyNow(): return 1234 FunctionBeingTested(now=MyNow)










          

      

      

    

  

    
      
          
            
  
Why use Pymox


Comparing Mox to existing Python mock libraries

An engineer has a couple of options when picking a mock object library to use for testing. In this document I will do my best to outline the differences between Mox and other open source alternatives, and why you may or may not prefer to use Mox.



Other options

Believe it or not, similar code does exist.


	The Python Mock Module (http://python-mock.sourceforge.net/): This was the first mock module I used in Python, and arguably the reason why I wrote Mox.


	pMock (http://pmock.sourceforge.net/): Inspired by jMock, the other side of Java inspired coin.


	Python Mocker (http://labix.org/mocker): The most similar to Mox.






Simple use-case comparison

For now, let’s just describe the basic use-case for a mock object. Let’s pretend that we have a class that generates random greeting in a very complex, expensive, way.

class Greeter(object): def Get(self): # expensive code here return generated_greeting






Mox

mock_greeter = mox.MockAnything()
mock_greeter.Get().AndReturn("hello")
mox.Replay(mock_greeter)
assertEquals("hello", mock_greeter.Get())
mox.Verify(mock_greeter)







Python Mock Module

Python Mock Module uses a dictionary to define the expected behavior, and verify methods were called. Using strings for method names seems very fragile to me. It would also complicate any auto-magic refactoring you might do.

mock_greeter = mock.Mock( {"Get" : "hello" })
assertEquals("hello", mock_greeter.Get())
mock.mockCheckCall(self, 0, "Get")







pMock

pMock is extremely verbose, and probably very flexible. Because it lacks a replay state, any calls to the mock that weren’t recorded before hand might silently be recorded as void method calls.

mock_greeter = pmock.Mock()
mock_greeter.expects(pmock.once()).Get().will(pmock.return_value("hello"))
assertEquals("hello", mock_greeter.Get())
mock_greeter.verify()







Mocker

Mocker is very similar to Mox, but with Mocker the return value is set on the mocker module rather than the mock itself, which seems awkward to me.

mock_greeter = mocker.mock()
mock_greeter.Get()
mocker.result("hello")
mocker.replay()
assertEquals("hello", mock_greeter.Get())
mocker.verify()








Mocking real objects, and caring

Some of the libraries listed above don’t (seem to) offer support for a mock enforcing the interface of the mocked-class. This kind of enforcement can be very helpful.


Mox

Mox’s MockObject enforces the interface of the supplied object.

mock_greeter = mox.MockObject(Greeter)
mock_greeter.Get().AndReturn("hello")
mox.Replay(mock_greeter)
assertEquals("hello", mock_greeter.Get())
mox.Verify(mock_greeter)







Python Mock Module

mock_greeter = mock.Mock({"Get", "hello"}, Greeter)
assertEquals("hello", mock_greeter.Get())
mock.mockCheckCall(self, 0, "Get")







pMock

Does not seem to support this.



Mocker

Hurray, Mocker does this.

mock_greeter = mocker.mock(Greeter)
mock_greeter.Get()
mocker.result("hello")
mocker.replay()
assertEquals("hello", mock_greeter.Get())
mocker.verify()








Ordering / unordering of calls

Sometimes it is necessary for calls to be ordered (opening datacase connection before issuing a query), or un-ordered (iterating over a dictionary is non-deterministic). Handling this is done differently in the different libraries.

### Mox ###

Mox imposes ordering by default, because determinism is a good thing (tm) in tests. Methods are expected to be called in the order they are recorded in. In the case that you need to iterate over a dictionary, or do other operations with undefined order, you may use unordered groups



Iterating over dictionary keys

mock_intToStr.Convert(1).InAnyOrder().andReturn("one")
mock_intToStr.Convert(2).InAnyOrder().andReturn("two")






Python Mock Module

The Python Mock Module doesn’t impose any ordering on calls, they’re just dictionary lookups. The only ordering is done through mockCheckCall or mockSetExpectation. I’m not sure if a lack of ordering is even possible, or specifying different return values based on parameters. Ugh.

TODO?







pMock

By default, the calls are unordered, but order can be defined by labeling calls

mock_db.expects(pmock.once()).OpenConnection().id("open")
mock_db.expects(pmock.once()).Query().id("query").after("open")







Mocker

Like the other libraries, order is not enforced. Instead of using method names, it uses block notation, which seems pretty neat.

with mocker:order():
    mock_db.OpenConnection()
    mock_db.Query()








Raising exceptions

Often times you’ll want to test that your code not only works properly, but fails elegantly. In these cases, you would like your mock to return some unexpected value (easy to do), or raise an exception.


Mox

mock_greeter.Get().AndRaise(Exception("no greetings left"))
mox.Replay(mock_greeter)
assertRaises(Exception, mock_greeter.Get)
mox.Verify(mock_greeter)







Python Mock Module

Once again, strings are used for method names, and verification is done by hand.

mock_greeter.mockSetExpectation('Get', expectException(Exception))
assertRaises(Exception, mock_greeter.Get)
mock.mockCheckCall(self, 0, "Get")







pMock

mock_greeter.expects(pmock.once()).Get().will(pmock.raise_exception(Exception("no greetings left")))
assertRaises(Exception, mock_greeter.Get) mock_greeter.verify()







Mocker

mock_greeter.Get()
mocker.throw(Exception("no greetings left")
mocker.replay()
assertRaises(Exception, mock_greeter.Get)
mocker.verify()










          

      

      

    

  _static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          Pymox
        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





